An Improved Component-Wise WENO-NIP Scheme for Euler System
Ruo Li and
Wei Zhong ()
Additional contact information
Ruo Li: CAPT, LMAM and School of Mathematical Sciences, Peking University, Beijing 100871, China
Wei Zhong: School of Mathematical Sciences, Peking University, Beijing 100871, China
Mathematics, 2022, vol. 10, issue 20, 1-21
Abstract:
As is well known, due to the spectral decomposition of the Jacobian matrix, the WENO reconstructions in the characteristic-wise fashion (abbreviated as CH-WENO) need much higher computational cost and more complicated implementation than their counterparts in the component-wise fashion (abbreviated as CP-WENO). Hence, the CP-WENO schemes are very popular methods for large-scale simulations or situations whose full characteristic structures cannot be obtained in closed form. Unfortunately, the CP-WENO schemes usually suffer from spurious oscillations badly. The main objective of the present work is to overcome this drawback for the CP-WENO-NIP scheme, whose counterpart in the characteristic-wise fashion was carefully studied and well-validated numerically. The approximated dispersion relation (ADR) analysis is performed to study the spectral property of the CP-WENO-NIP scheme and then a negative-dissipation interval which leads to a high risk of causing spurious oscillations is discovered. In order to remove this negative-dissipation interval, an additional term is introduced to the nonlinear weights formula of the CP-WENO-NIP scheme. The improved scheme is denoted as CP-WENO-INIP. Accuracy test examples indicate that the proposed CP-WENO-INIP scheme can achieve the optimal convergence orders in smooth regions even in the presence of the critical points. Extensive numerical experiments demonstrate that the CP-WENO-INIP scheme is much more robust compared to the corresponding CP-WENO-NIP or even CH-WENO-NIP schemes for both 1D and 2D problems modeled via the Euler equations.
Keywords: component-wise WENO-NIP; Euler equations; shock capturing; reducing spurious oscillations (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/10/20/3881/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/20/3881/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:20:p:3881-:d:946886
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().