EconPapers    
Economics at your fingertips  
 

Iterative Dual CNNs for Image Deblurring

Jinbin Wang (), Ziqi Wang and Aiping Yang ()
Additional contact information
Jinbin Wang: The College of Intelligence and Computing, Tianjin University, Tianjin 300072, China
Ziqi Wang: School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
Aiping Yang: School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China

Mathematics, 2022, vol. 10, issue 20, 1-13

Abstract: Image deblurring attracts research attention in the field of image processing and computer vision. Traditional deblurring methods based on statistical prior largely depend on the selected prior type, which limits their restoring ability. Moreover, the constructed deblurring model is difficult to solve, and the operation is comparatively complicated. Meanwhile, deep learning has become a hotspot in various fields in recent years. End-to-end convolutional neural networks (CNNs) can learn the pixel mapping relationships between degraded images and clear images. In addition, they can also obtain the result of effectively eliminating spatial variable blurring. However, conventional CNNs have some disadvantages in generalization ability and details of the restored image. Therefore, this paper presents an iterative dual CNN called IDC for image deblurring, where the task of image deblurring is divided into two sub-networks: deblurring and detail restoration. The deblurring sub-network adopts a U-Net structure to learn the semantical and structural features of the image, and the detail restoration sub-network utilizes a shallow and wide structure without downsampling, where only the image texture features are extracted. Finally, to obtain the deblurred image, this paper presents a multiscale iterative strategy that effectively improves the robustness and precision of the model. The experimental results showed that the proposed method has an excellent effect of deblurring on a real blurred image dataset and is suitable for various real application scenes.

Keywords: image deblurring; deep learning; dual CNNs; iterative strategy; U-net (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/20/3891/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/20/3891/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:20:p:3891-:d:947879

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3891-:d:947879