Finite-Time Stability of a Second-Order Bang–Bang Sliding Control Type
Carlos Aguilar-Ibanez (),
Ivan J. Salgado Ramos,
Miguel S. Suarez-Castanon,
Jose de Jesus Rubio and
Jesus A. Meda-Campana
Additional contact information
Carlos Aguilar-Ibanez: Centro de Investigacion en Computacion, Instituto Politecnico Nacional, Ciudad de Mexico 07738, Mexico
Ivan J. Salgado Ramos: Centro de Innovacion y Desarrollo Tecnologico en Computo, Instituto Politecnico Nacional, Ciudad de Mexico 07738, Mexico
Miguel S. Suarez-Castanon: Escuela Superior de Computo, Instituto Politecnico Nacional, Ciudad de Mexico 07738, Mexico
Jose de Jesus Rubio: Escuela Superior de Ingenieria Mecanica y Electrica Unidad Azcapotzalco, Instituto Politecnico Nacional, Ciudad de Mexico 02550, Mexico
Jesus A. Meda-Campana: Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco, Instituto Politécnico Nacional, Ciudad de Mexico 07738, Mexico
Mathematics, 2022, vol. 10, issue 21, 1-14
Abstract:
This paper presents the double chain–integrator finite-time convergence in a closed loop with a second-order bang–bang sliding control. The direct Lyapunov method carried out the stability analysis and the reaching time estimation using a suitable non-smooth strong Lyapunov function. That is, the proposed energy function is strictly positive definite, with a strictly definite negative time derivative. Additionally, the proposed function estimates the reaching time in the presence of matching bounded perturbations. Numerical comparisons with well-known approaches were performed to assess the proposed strategy’s effectiveness.
Keywords: finite-time stability; strong Lyapunov function; sliding mode control (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/10/21/3937/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/21/3937/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:21:p:3937-:d:951177
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().