EconPapers    
Economics at your fingertips  
 

Finite-Time Stability of a Second-Order Bang–Bang Sliding Control Type

Carlos Aguilar-Ibanez (), Ivan J. Salgado Ramos, Miguel S. Suarez-Castanon, Jose de Jesus Rubio and Jesus A. Meda-Campana
Additional contact information
Carlos Aguilar-Ibanez: Centro de Investigacion en Computacion, Instituto Politecnico Nacional, Ciudad de Mexico 07738, Mexico
Ivan J. Salgado Ramos: Centro de Innovacion y Desarrollo Tecnologico en Computo, Instituto Politecnico Nacional, Ciudad de Mexico 07738, Mexico
Miguel S. Suarez-Castanon: Escuela Superior de Computo, Instituto Politecnico Nacional, Ciudad de Mexico 07738, Mexico
Jose de Jesus Rubio: Escuela Superior de Ingenieria Mecanica y Electrica Unidad Azcapotzalco, Instituto Politecnico Nacional, Ciudad de Mexico 02550, Mexico
Jesus A. Meda-Campana: Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco, Instituto Politécnico Nacional, Ciudad de Mexico 07738, Mexico

Mathematics, 2022, vol. 10, issue 21, 1-14

Abstract: This paper presents the double chain–integrator finite-time convergence in a closed loop with a second-order bang–bang sliding control. The direct Lyapunov method carried out the stability analysis and the reaching time estimation using a suitable non-smooth strong Lyapunov function. That is, the proposed energy function is strictly positive definite, with a strictly definite negative time derivative. Additionally, the proposed function estimates the reaching time in the presence of matching bounded perturbations. Numerical comparisons with well-known approaches were performed to assess the proposed strategy’s effectiveness.

Keywords: finite-time stability; strong Lyapunov function; sliding mode control (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/21/3937/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/21/3937/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:21:p:3937-:d:951177

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:21:p:3937-:d:951177