Joint Optimization of Multi-Cycle Timetable Considering Supply-to-Demand Relationship and Energy Consumption for Rail Express
Han Zheng,
Junhua Chen (),
Zhaocha Huang and
Jianhao Zhu
Additional contact information
Han Zheng: School of Traffic and Transportation, Beijing Jiaotong University, No. 3 Shang Yuan Cun, Hai Dian District, Beijing 100044, China
Junhua Chen: School of Traffic and Transportation, Beijing Jiaotong University, No. 3 Shang Yuan Cun, Hai Dian District, Beijing 100044, China
Zhaocha Huang: School of Traffic and Transportation, Beijing Jiaotong University, No. 3 Shang Yuan Cun, Hai Dian District, Beijing 100044, China
Jianhao Zhu: School of Traffic and Transportation, Beijing Jiaotong University, No. 3 Shang Yuan Cun, Hai Dian District, Beijing 100044, China
Mathematics, 2022, vol. 10, issue 21, 1-29
Abstract:
Rail expresses play a vital role in intracity and intercity transportations. For accommodating multi-source passenger traffic with different travel demand, while optimizing the energy consumption, we propose a multi-cycle train timetable optimization model and a decomposition algorithm. A periodized spatial-temporal network that can support the integrated optimization of passenger service satisfaction and energy consumption considering multi-cycles is studied as the basis of the modeling. Based on this, an integrated optimization model taking the planning of the train spatial-temporal path, cycle length and active lines as variables is proposed. Then, for solving the issues caused by the complex relationships among the cycle length, line and train spatial-temporal path in large-scale cases, a hybrid heuristic Lagrangian decomposition method is investigated. Numerical experiments under different passenger flow demand scenarios are performed. The results show that the more fluctuating the passenger flow is, the more obvious the advantage of a multi-cycle timetable is. For the scenario with two passenger flow peaks, compared to a single-cycle timetable, the demand satisfaction ratio of the multi-cycle timetable is 4.44% higher and the train vacancy rate is 11.49% lower. A multi-cycle timetable also saves 3.24 h running time and 15,553.6 kwh energy consumption compared to a single-cycle timetable. Large-scale real cases show that this advantage still exists in practice.
Keywords: rail express; passenger flow demand; multi-cycle train timetable; energy consumption; spatial-temporal network; Lagrangian relaxation (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/10/21/4164/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/21/4164/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:21:p:4164-:d:965828
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().