EconPapers    
Economics at your fingertips  
 

Bounds for the Rate of Convergence in the Generalized Rényi Theorem

Victor Korolev ()
Additional contact information
Victor Korolev: Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, 119991 Moscow, Russia

Mathematics, 2022, vol. 10, issue 22, 1-16

Abstract: In the paper, an overview is presented of the results on the convergence rate bounds in limit theorems concerning geometric random sums and their generalizations to mixed Poisson random sums, including the case where the mixing law is itself a mixed exponential distribution. The main focus is on the upper bounds for the Zolotarev ζ -metric as the distance between the pre-limit and limit laws. New results are presented that extend existing estimates of the rate of convergence of geometric random sums (in the well-known Rényi theorem) to a considerably more general class of random indices whose distributions are mixed Poisson, including generalized negative binomial (e.g., Weibull-mixed Poisson), Pareto-type (Lomax)-mixed Poisson, exponential power-mixed Poisson, Mittag-Leffler-mixed Poisson, and one-sided Linnik-mixed Poisson distributions. A transfer theorem is proven that makes it possible to obtain upper bounds for the rate of convergence in the law of large numbers for mixed Poisson random sums with mixed exponential mixing distribution from those for geometric random sums (that is, from the convergence rate estimates in the Rényi theorem). Simple explicit bounds are obtained for ζ -metrics of the first and second orders. An estimate is obtained for the stability of representation of the Mittag-Leffler distribution as a geometric convolution (that is, as the distribution of a geometric random sum).

Keywords: Rényi theorem; law of large numbers; convergence rate; Zolotarev zeta-metric; geometric random sum; mixed Poisson random sum; convergence rate bound; mixed exponential distribution; geometric stability (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/22/4252/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/22/4252/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:22:p:4252-:d:971706

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:22:p:4252-:d:971706