Exponential Graph Regularized Non-Negative Low-Rank Factorization for Robust Latent Representation
Guowei Yang,
Lin Zhang and
Minghua Wan ()
Additional contact information
Guowei Yang: School of Computer Science (School of Intelligent Auditing), Nanjing Audit University, Nanjing 211815, China
Lin Zhang: School of Computer Science (School of Intelligent Auditing), Nanjing Audit University, Nanjing 211815, China
Minghua Wan: School of Computer Science (School of Intelligent Auditing), Nanjing Audit University, Nanjing 211815, China
Mathematics, 2022, vol. 10, issue 22, 1-20
Abstract:
Non-negative matrix factorization (NMF) is a fundamental theory that has received much attention and is widely used in image engineering, pattern recognition and other fields. However, the classical NMF has limitations such as only focusing on local information, sensitivity to noise and small sample size (SSS) problems. Therefore, how to develop the NMF to improve the performance and robustness of the algorithm is a worthy challenge. Based on the bottlenecks above, we propose an exponential graph regularization non-negative low-rank factorization algorithm (EGNLRF) combining sparseness, low rank and matrix exponential. Firstly, based on the assumption that the data is corroded, we decompose a given raw data item with a data error fitting noise matrix, applying a low-rank constraint to the denoising data. Then, we perform a non-negative factorization on the resulting low-rank matrix, from which we derive the low-dimensional representation of the original matrix. Finally, we use the low-dimensional representation for graph embedding to maintain the geometry between samples. The graph embedding terms are matrix exponentiated to cope with SSS problems and nearest neighbor sensitivity. The above three steps will be incorporated into a joint framework to validate and optimize each other; therefore, we can learn latent data representations that are undisturbed by noise and preserve the local structure of known samples. We conducted simulation experiments on different datasets and verified the effectiveness of the algorithm by comparing the proposed with the lasting ones related to NMF, low rank and graph embedding.
Keywords: non-negative matrix factorization; low rank; matrix exponential; graph embedding; image representation (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/10/22/4314/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/22/4314/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:22:p:4314-:d:976126
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().