EconPapers    
Economics at your fingertips  
 

Power Families of Bivariate Proportional Hazard Models

Guillermo Martínez-Flórez, Carlos Barrera-Causil () and Artur J. Lemonte
Additional contact information
Guillermo Martínez-Flórez: Departamento de Matemáticas y Estadística, Facultad de Ciencias Básicas, Universidad de Córdoba, Montería 230002, Colombia
Carlos Barrera-Causil: Grupo de Investigación Davinci, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050034, Colombia
Artur J. Lemonte: Departamento de Estatística, Universidade Federal do Rio Grande do Norte, Natal 59077-000, RN, Brazil

Mathematics, 2022, vol. 10, issue 23, 1-18

Abstract: In this paper, we propose a general class of bivariate proportional hazard distributions, which is based on the family of asymmetric proportional hazard distributions and the bivariate Pareto copula. Distributional properties of the bivariate proportional hazard distribution are derived. We specialize the bivariate proportional hazard family of distributions to the normal case, and so we introduce the bivariate proportional hazard normal distribution. Parameter estimation by the maximum likelihood method of the bivariate proportional hazard normal distribution is then discussed. Finally, an application of the new bivariate distribution to real data is considered for illustrative purposes.

Keywords: asymmetric distribution; bivariate distribution; copula; two-stage estimation (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/23/4410/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/23/4410/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:23:p:4410-:d:981200

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:23:p:4410-:d:981200