Optimal Location and Operation of PV Sources in DC Grids to Reduce Annual Operating Costs While Considering Variable Power Demand and Generation
Luis Fernando Grisales-Noreña (),
Oscar Danilo Montoya and
Carlos Andres Ramos-Paja
Additional contact information
Luis Fernando Grisales-Noreña: Department of Electrical Engineering, Faculty of Engineering, Universidad de Talca, Campus Curicó, Curicó 3340000, Chile
Oscar Danilo Montoya: Grupo de Compatibilidad e Interferencia Electromagnética (GCEM), Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá 110231, Colombia
Carlos Andres Ramos-Paja: Facultad de Minas, Universidad Nacional de Colombia, Medellin 050041, Colombia
Mathematics, 2022, vol. 10, issue 23, 1-17
Abstract:
Due to the need to include renewable energy resources in electrical grids as well as the development and high implementation of PV generation and DC grids worldwide, it is necessary to propose effective optimization methodologies that guarantee that PV generators are located and sized on the DC electrical network. This will reduce the operation costs and cover the investment and maintenance cost related to the new technologies (PV distributed generators), thus satisfying all technical and operative constraints of the distribution grid. It is important to propose solution methodologies that require short processing times, with the aim of exploring a large number of scenarios while planning energy projects that are to be presented in public and private contracts, as well as offering solutions to technical problems of electrical distribution companies within short periods of time. Based on these needs, this paper proposes the implementation of a Discrete–Continuous Parallel version of the Particle Swarm Optimization algorithm (DCPPSO) to solve the problem regarding the integration of photovoltaic (PV) distributed generators (DGs) in Direct Current (DC) grids, with the purpose of reducing the annual costs related to energy purchasing as well as the investment and maintenance cost associated with PV sources in a scenario of variable power demand and generation. In order to evaluate the effectiveness, repeatability, and robustness of the proposed methodology, four comparison methods were employed, i.e., a commercial software and three discrete–continuous methodologies, as well as two test systems of 33 and 69 buses. In analyzing the results obtained in terms of solution quality, it was possible to identify that the DCPPSO proposed obtained the best performance in relation to the comparison methods used, with excellent results in relation to the processing times and standard deviation. The main contribution of the proposed methodology is the implementation of a discrete–continuous codification with a parallel processing tool for the evaluation of the fitness function. The results obtained and the reports in the literature for alternating current networks demonstrate that the DCPPSO is the optimization methodology with the best performance in solving the problem of the optimal integration of PV sources in economic terms and for any kind of electrical system and size.
Keywords: DC networks; discrete–continuous metaheuristic; parallel processing tool; photovoltaic generation; variable power demand; variable renewable generation (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/10/23/4512/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/23/4512/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:23:p:4512-:d:988094
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().