EconPapers    
Economics at your fingertips  
 

Mathematical Expressions Useful for Tunable Properties of Simple Square Wave Generators

Roman Sotner () and Jan Jerabek
Additional contact information
Roman Sotner: Department of Radio Electronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic
Jan Jerabek: Department of Telecommunications, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic

Mathematics, 2022, vol. 10, issue 23, 1-18

Abstract: This paper compares two electronically controllable solutions of triangular and square wave generators benefiting from a single IC package including all necessary active elements (modular cells fabricated in I3T 0.35 µm ON Semiconductor process operating with ±1.65 V supply voltage). Internal cells are used for construction of building blocks of the generator (integrator and Schmitt trigger/comparator). Proposed solutions have adjustable parameters dependent on the values of DC control voltages and currents. Attention is given to the mathematical expressions for the advantageous tunability of these generators. Theoretical mathematical functions comparing the standard linear formula with special expression for the frequency adjustment are evaluated and compared with experimentally obtained results. Mathematical functions prove that the proposed topologies improve efficiency of tunability and reduce overall complexity of both generators. Features of proposed solutions were verified experimentally. Both single-parameter tunable designs target on the operation in bands from tens to hundreds of kHz (from 13 kHz up to 251 kHz for the driving voltage between 0.05 V and 1.0 V for the first solution; from 12 kHz up to 847 kHz for the driving current between 5 µA and 140 µA for the second solution). A comparison with similar solutions indicates beneficial performance of the proposed solutions in tunability ratio vs. driving parameter ratio and also because simplicity of circuitry is low. The qualitative evaluation and comparison of parameters of both circuits is given and confirms theoretical expectations.

Keywords: current conveyor; electronic adjusting (mathematic function); modular approach; operational transconductance amplifier; triangular and square wave generator; tuning (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/23/4528/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/23/4528/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:23:p:4528-:d:989634

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:23:p:4528-:d:989634