EconPapers    
Economics at your fingertips  
 

A Non-Archimedean Interior Point Method and Its Application to the Lexicographic Multi-Objective Quadratic Programming

Lorenzo Fiaschi () and Marco Cococcioni
Additional contact information
Lorenzo Fiaschi: Department of Information Engineering, University of Pisa, 56122 Pisa, Italy
Marco Cococcioni: Department of Information Engineering, University of Pisa, 56122 Pisa, Italy

Mathematics, 2022, vol. 10, issue 23, 1-34

Abstract: This work presents a generalized implementation of the infeasible primal-dual interior point method (IPM) achieved by the use of non-Archimedean values, i.e., infinite and infinitesimal numbers. The extended version, called here the non-Archimedean IPM (NA-IPM), is proved to converge in polynomial time to a global optimum and to be able to manage infeasibility and unboundedness transparently, i.e., without considering them as corner cases: by means of a mild embedding (addition of two variables and one constraint), the NA-IPM implicitly and transparently manages their possible presence. Moreover, the new algorithm is able to solve a wider variety of linear and quadratic optimization problems than its standard counterpart. Among them, the lexicographic multi-objective one deserves particular attention, since the NA-IPM overcomes the issues that standard techniques (such as scalarization or preemptive approach) have. To support the theoretical properties of the NA-IPM, the manuscript also shows four linear and quadratic non-Archimedean programming test cases where the effectiveness of the algorithm is verified. This also stresses that the NA-IPM is not just a mere symbolic or theoretical algorithm but actually a concrete numerical tool, paving the way for its use in real-world problems in the near future.

Keywords: quadratic programming; interior point methods; lexicographic multi-objective optimization; non-standard analysis; infinite/infinitesimal numbers; non-Archimedean scientific computing; fixed-length representations (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/23/4536/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/23/4536/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:23:p:4536-:d:989701

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:23:p:4536-:d:989701