On Global Offensive Alliance in Zero-Divisor Graphs
Raúl Juárez Morales,
Gerardo Reyna Hernández,
Omar Rosario Cayetano and
Jesús Romero Valencia
Additional contact information
Raúl Juárez Morales: Facultad de Matemáticas, Universidad Autónoma de Guerrero, Acapulco 39750, Mexico
Gerardo Reyna Hernández: Facultad de Matemáticas, Universidad Autónoma de Guerrero, Acapulco 39750, Mexico
Omar Rosario Cayetano: Facultad de Matemáticas, Universidad Autónoma de Guerrero, Acapulco 39750, Mexico
Jesús Romero Valencia: Facultad de Matemáticas, Universidad Autónoma de Guerrero, Chilpancingo 39087, Mexico
Mathematics, 2022, vol. 10, issue 3, 1-10
Abstract:
Let Γ ( V , E ) be a simple connected graph with more than one vertex, without loops or multiple edges. A nonempty subset S ⊆ V is a global offensive alliance if every vertex v ∈ V − S satisfies that δ S ( v ) ≥ δ S ¯ ( v ) + 1 . The global offensive alliance number γ o ( Γ ) is defined as the minimum cardinality among all global offensive alliances. Let R be a finite commutative ring with identity. In this paper, we study the global offensive alliance number of the zero-divisor graph Γ ( R ) .
Keywords: offensive alliances; zero-divisor graph; commutative rings (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/10/3/298/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/3/298/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:3:p:298-:d:728043
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().