EconPapers    
Economics at your fingertips  
 

Numerical Solutions to Wave Propagation and Heat Transfer Non-Linear PDEs by Using a Meshless Method

Jesús Flores, Ángel García, Mihaela Negreanu, Eduardo Salete, Francisco Ureña and Antonio M. Vargas
Additional contact information
Jesús Flores: Escuela Técnica Superior de Ingernieros Industriales, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain
Ángel García: Escuela Técnica Superior de Ingernieros Industriales, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain
Mihaela Negreanu: Instituto de Matemática Interdisciplinar, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
Eduardo Salete: Escuela Técnica Superior de Ingernieros Industriales, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain
Francisco Ureña: Escuela Técnica Superior de Ingernieros Industriales, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain
Antonio M. Vargas: Instituto de Matemática Interdisciplinar, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain

Mathematics, 2022, vol. 10, issue 3, 1-9

Abstract: The applications of the Eikonal and stationary heat transfer equations in broad fields of science and engineering are the motivation to present an implementation, not only valid for structured domains but also for completely irregular domains, of the meshless Generalized Finite Difference Method (GFDM). In this paper, the fully non-linear Eikonal equation and the stationary heat transfer equation with variable thermal conductivity and source term are solved in 2D. The explicit formulae for derivatives are developed and applied to the equations in order to obtain the numerical schemes to be used. Moreover, the numerical values that approximate the functions for the considered domain are obtained. Numerous examples for both equations on irregular 2D domains are exposed to underline the effectiveness and practicality of the method.

Keywords: generalized finite difference method; eikonal equation; heat transfer equation; meshless methods; Newton–Raphson (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/3/332/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/3/332/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:3:p:332-:d:730658

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:3:p:332-:d:730658