EconPapers    
Economics at your fingertips  
 

Beltrami Equations on Rossi Spheres

Elisabetta Barletta, Sorin Dragomir and Francesco Esposito
Additional contact information
Elisabetta Barletta: Dipartimento di Matematica, Informatica ed Economia, Universita` degli Studi della Basilicata, 85100 Potenza, Italy
Sorin Dragomir: Dipartimento di Matematica, Informatica ed Economia, Universita` degli Studi della Basilicata, 85100 Potenza, Italy
Francesco Esposito: Dipartimento di Matematica, Informatica ed Economia, Universita` degli Studi della Basilicata, 85100 Potenza, Italy

Mathematics, 2022, vol. 10, issue 3, 1-40

Abstract: Beltrami equations L ¯ t ( g ) = μ ( · , t ) L t ( g ) on S 3 (where L t , | t | < 1 , are the Rossi operators i.e., L t spans the globally nonembeddable CR structure H ( t ) on S 3 discovered by H. Rossi) are derived such that to describe quasiconformal mappings f : S 3 → N ⊂ C 2 from the Rossi sphere S 3 , H ( t ) . Using the Greiner–Kohn–Stein solution to the Lewy equation and the Bargmann representations of the Heisenberg group, we solve the Beltrami equations for Sobolev-type solutions g t such that g t − v ∈ W F 1 , 2 S 3 , θ with v ∈ CR ∞ S 3 , H ( 0 ) .

Keywords: CR manifold; Tanaka–Webster connection; Fefferman metric; Lewy operator; Heisenberg group; quasiconformal map; Beltrami equation; Rossi sphere; Bargmann representation; Fourier transform (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/3/371/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/3/371/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:3:p:371-:d:734031

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:3:p:371-:d:734031