EconPapers    
Economics at your fingertips  
 

Painlevé Test and Exact Solutions for (1 + 1)-Dimensional Generalized Broer–Kaup Equations

Sheng Zhang and Bo Xu
Additional contact information
Sheng Zhang: School of Mathematical Sciences, Bohai University, Jinzhou 121013, China
Bo Xu: School of Mathematics, China University of Mining and Technology, Xuzhou 221116, China

Mathematics, 2022, vol. 10, issue 3, 1-10

Abstract: In this paper, the Painlevé integrable property of the (1 + 1)-dimensional generalized Broer–Kaup (gBK) equations is first proven. Then, the Bäcklund transformations for the gBK equations are derived by using the Painlevé truncation. Based on a special case of the derived Bäcklund transformations, the gBK equations are linearized into the heat conduction equation. Inspired by the derived Bäcklund transformations, the gBK equations are reduced into the Burgers equation. Starting from the linear heat conduction equation, two forms of N-soliton solutions and rational solutions with a singularity condition of the gBK equations are constructed. In addition, the rational solutions with two singularity conditions of the gBK equation are obtained by considering the non-uniqueness and generality of a resonance function embedded into the Painlevé test. In order to understand the nonlinear dynamic evolution dominated by the gBK equations, some of the obtained exact solutions, including one-soliton solutions, two-soliton solutions, three-soliton solutions, and two pairs of rational solutions, are shown by three-dimensional images. This paper shows that when the Painlevé test deals with the coupled nonlinear equations, the highest negative power of the coupled variables should be comprehensively considered in the leading term analysis rather than the formal balance between the highest-order derivative term and the highest-order nonlinear term.

Keywords: Painlevé integrable property; Painlevé test; leading term analysis; (1 + 1)-dimensional gBK equations; Bäcklund transformations; exact solutions (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/3/486/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/3/486/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:3:p:486-:d:741006

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:3:p:486-:d:741006