Influence of Bioconvection and Chemical Reaction on Magneto—Carreau Nanofluid Flow through an Inclined Cylinder
Hossam A. Nabwey,
Sumayyah I. Alshber,
Ahmed M. Rashad and
Abd El Nasser Mahdy
Additional contact information
Hossam A. Nabwey: Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
Sumayyah I. Alshber: Department of Mathematics, College of Education in Al-Dilam, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
Ahmed M. Rashad: Department of Mathematics, Faculty of Science, Aswan University, Aswan 81528, Egypt
Abd El Nasser Mahdy: Mathematics Department, Faculty of Science, South Valley University, Qena 83523, Egypt
Mathematics, 2022, vol. 10, issue 3, 1-14
Abstract:
The present contribution focuses on heat transmission in the conjugate mixed bioconvection flow of Carreau nanofluid with swimming gyrotactic microorganisms through an inclined stretchable cylinder with variable magnetic field impact and binary chemical reaction. Additionally, the investigation involves the aspects of variable decrease or increase in heat source and non-uniform thermal conductivity. A passively controlled nanofluid pattern is used to estimate this nano-bioconvection flow case, which is believed to be more physically accurate than the earlier actively controlled nanofluid typically employed. One of essential features of this investigation is the imposition of a zero-mass flux condition at the surface of the cylinder. Through the implementation of an appropriate transformation, the nonlinear PDE system is mutated into similar equations. The flow equations thus obtained are solved numerically to explore the influence of the physical constraints involved through implementation with the aid of the MATLAB bvp4c code. The solutions were captured for both zero and non-zero bioconvection Rayleigh number, i.e., for flow with and without microorganisms. The present numerical results are compared with the available data and are determined to be in excellent agreement. The significant result of the present article is that the degree of nanoparticle concentration in the nanofluid exhibits an increasing trend with higher values of activation energy constraint.
Keywords: Carreau nanofluid; bioconvection; non-uniform thermal conductivity; microorganisms; binary chemical reaction; cylinder (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/2227-7390/10/3/504/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/3/504/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:3:p:504-:d:742407
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().