EconPapers    
Economics at your fingertips  
 

Yamabe Solitons on Some Conformal Almost Contact B-Metric Manifolds

Mancho Manev
Additional contact information
Mancho Manev: Department of Algebra and Geometry, Faculty of Mathematics and Informatics, University of Plovdiv Paisii Hilendarski, 24 Tzar Asen St, 4000 Plovdiv, Bulgaria

Mathematics, 2022, vol. 10, issue 4, 1-12

Abstract: A Yamabe soliton is defined on an arbitrary almost-contact B-metric manifold, which is obtained by a contact conformal transformation of the Reeb vector field, its dual contact 1-form, the B-metric, and its associated B-metric. The cases when the given manifold is cosymplectic or Sasaki-like are studied. In this manner, manifolds are obtained that belong to one of the main classes of the studied manifolds. The same class contains the conformally equivalent manifolds of cosymplectic manifolds by the usual conformal transformation of the B-metric on contact distribution. In both cases, explicit five-dimensional examples are given, which are characterized in relation to the results obtained.

Keywords: Yamabe soliton; almost contact B-metric manifold; almost contact complex Riemannian manifold; Sasaki-like manifold (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/4/658/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/4/658/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:4:p:658-:d:753800

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:4:p:658-:d:753800