EconPapers    
Economics at your fingertips  
 

Deep Red Lesion Classification for Early Screening of Diabetic Retinopathy

Muhammad Nadeem Ashraf, Muhammad Hussain and Zulfiqar Habib
Additional contact information
Muhammad Nadeem Ashraf: Department of Computer Science, COMSATS University Islamabad, Lahore 54700, Pakistan
Muhammad Hussain: Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia
Zulfiqar Habib: Department of Computer Science, COMSATS University Islamabad, Lahore 54700, Pakistan

Mathematics, 2022, vol. 10, issue 5, 1-26

Abstract: Diabetic retinopathy (DR) is an asymptotic and vision-threatening complication among working-age adults. To prevent blindness, a deep convolutional neural network (CNN) based diagnosis can help to classify less-discriminative and small-sized red lesions in early screening of DR patients. However, training deep models with minimal data is a challenging task. Fine-tuning through transfer learning is a useful alternative, but performance degradation, overfitting, and domain adaptation issues further demand architectural amendments to effectively train deep models. Various pre-trained CNNs are fine-tuned on an augmented set of image patches. The best-performing ResNet50 model is modified by introducing reinforced skip connections, a global max-pooling layer, and the sum-of-squared-error loss function. The performance of the modified model (DR-ResNet50) on five public datasets is found to be better than state-of-the-art methods in terms of well-known metrics. The highest scores (0.9851, 0.991, 0.991, 0.991, 0.991, 0.9939, 0.0029, 0.9879, and 0.9879) for sensitivity, specificity, AUC, accuracy, precision, F1-score, false-positive rate, Matthews’s correlation coefficient, and kappa coefficient are obtained within a 95% confidence interval for unseen test instances from e-Ophtha_MA. This high sensitivity and low false-positive rate demonstrate the worth of a proposed framework. It is suitable for early screening due to its performance, simplicity, and robustness.

Keywords: computer-aided diagnosis; diabetic retinopathy; red lesions; convolutional neural networks; deep residual networks; skip connections (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/5/686/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/5/686/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:5:p:686-:d:756177

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:5:p:686-:d:756177