EconPapers    
Economics at your fingertips  
 

Parameter–Elliptic Fourier Multipliers Systems and Generation of Analytic and C ∞ Semigroups

Bienvenido Barraza Martínez, Jonathan González Ospino, Rogelio Grau Acuña and Jairo Hernández Monzón
Additional contact information
Bienvenido Barraza Martínez: Departamento de Matemáticas y Estadística, Universidad del Norte, Barranquilla 081007, Colombia
Jonathan González Ospino: Departamento de Matemáticas y Estadística, Universidad del Norte, Barranquilla 081007, Colombia
Rogelio Grau Acuña: Departamento de Matemáticas y Estadística, Universidad del Norte, Barranquilla 081007, Colombia
Jairo Hernández Monzón: Departamento de Matemáticas y Estadística, Universidad del Norte, Barranquilla 081007, Colombia

Mathematics, 2022, vol. 10, issue 5, 1-19

Abstract: We consider Fourier multiplier systems on R n with components belonging to the standard Hörmander class S 1 , 0 m R n , but with limited regularity. Using a notion of parameter-ellipticity with respect to a subsector Λ ⊂ C (introduced by Denk, Saal, and Seiler) we show the generation of both C ∞ semigroups and analytic semigroups (in a particular case) on the Sobolev spaces W p k R n , C q with k ∈ N 0 , 1 ≤ p < ∞ and q ∈ N . For the proofs, we modify and improve a crucial estimate from Denk, Saal and Seiler, on the inverse matrix of the symbol (see Lemma 2). As examples, we apply the theory to solve the heat equation, a linear thermoelastic plate equation, a structurally damped plate equation, and a generalized plate equation, all in the whole space, in the frame of Sobolev spaces.

Keywords: C ? -semigroups; analytic semigroups; Fourier multipliers; ?-ellipticity (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/5/751/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/5/751/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:5:p:751-:d:759385

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:5:p:751-:d:759385