Parameter–Elliptic Fourier Multipliers Systems and Generation of Analytic and C ∞ Semigroups
Bienvenido Barraza Martínez,
Jonathan González Ospino,
Rogelio Grau Acuña and
Jairo Hernández Monzón
Additional contact information
Bienvenido Barraza Martínez: Departamento de Matemáticas y Estadística, Universidad del Norte, Barranquilla 081007, Colombia
Jonathan González Ospino: Departamento de Matemáticas y Estadística, Universidad del Norte, Barranquilla 081007, Colombia
Rogelio Grau Acuña: Departamento de Matemáticas y Estadística, Universidad del Norte, Barranquilla 081007, Colombia
Jairo Hernández Monzón: Departamento de Matemáticas y Estadística, Universidad del Norte, Barranquilla 081007, Colombia
Mathematics, 2022, vol. 10, issue 5, 1-19
Abstract:
We consider Fourier multiplier systems on R n with components belonging to the standard Hörmander class S 1 , 0 m R n , but with limited regularity. Using a notion of parameter-ellipticity with respect to a subsector Λ ⊂ C (introduced by Denk, Saal, and Seiler) we show the generation of both C ∞ semigroups and analytic semigroups (in a particular case) on the Sobolev spaces W p k R n , C q with k ∈ N 0 , 1 ≤ p < ∞ and q ∈ N . For the proofs, we modify and improve a crucial estimate from Denk, Saal and Seiler, on the inverse matrix of the symbol (see Lemma 2). As examples, we apply the theory to solve the heat equation, a linear thermoelastic plate equation, a structurally damped plate equation, and a generalized plate equation, all in the whole space, in the frame of Sobolev spaces.
Keywords: C ? -semigroups; analytic semigroups; Fourier multipliers; ?-ellipticity (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/10/5/751/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/5/751/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:5:p:751-:d:759385
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().