Construction of Boolean Functions from Hermitian Codes
Guillermo Sosa-Gómez,
Octavio Paez-Osuna,
Omar Rojas,
Pedro Luis del Ángel Rodríguez,
Herbert Kanarek and
Evaristo José Madarro-Capó
Additional contact information
Guillermo Sosa-Gómez: Facultad de Ciencias Económicas y Empresariales, Universidad Panamericana, Álvaro del Portillo 49, Zapopan 45010, Mexico
Octavio Paez-Osuna: Ronin Institute, Montclair, NJ 07043, USA
Omar Rojas: Facultad de Ciencias Económicas y Empresariales, Universidad Panamericana, Álvaro del Portillo 49, Zapopan 45010, Mexico
Pedro Luis del Ángel Rodríguez: Centro de Investigación en Matemáticas, Guanajuato 36023, Mexico
Herbert Kanarek: Departamento de Matemáticas, Universidad de Guanajuato, Guanajuato 36240, Mexico
Evaristo José Madarro-Capó: Institute of Cryptography, University of Havana, Havana 10400, Cuba
Mathematics, 2022, vol. 10, issue 6, 1-16
Abstract:
In 2005, Guillot published a method for the construction of Boolean functions using linear codes through the Maiorana–McFarland construction of Boolean functions. In this work, we present a construction using Hermitian codes, starting from the classic Maiorana–McFarland construction. This new construction describes how the set of variables is divided into two complementary subspaces, one of these subspaces being a Hermitian Code. The ideal theoretical parameters of the Hermitian code are proposed to reach desirable values of the cryptographic properties of the constructed Boolean functions such as nonlinearity, resiliency order, and order of propagation. An extension of Guillot’s work is also made regarding parameters selection using algebraic geometric tools, including explicit examples.
Keywords: Boolean function; Hermitian codes; nonlinearity; Hadamard transform; resilient (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2227-7390/10/6/899/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/6/899/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:6:p:899-:d:769043
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().