EconPapers    
Economics at your fingertips  
 

A Galerkin/POD Reduced-Order Model from Eigenfunctions of Non-Converged Time Evolution Solutions in a Convection Problem

Jesús Cortés, Henar Herrero and Francisco Pla
Additional contact information
Jesús Cortés: Departamento de Matemáticas, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
Henar Herrero: Departamento de Matemáticas, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
Francisco Pla: Departamento de Matemáticas, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain

Mathematics, 2022, vol. 10, issue 6, 1-31

Abstract: A Galerkin/POD reduced-order model from eigenfunctions of non-converged time evolution transitory states in a problem of Rayleigh–Bénard is presented. The problem is modeled in a rectangular box with the incompressible momentum equations coupled with an energy equation depending on the Rayleigh number R as a bifurcation parameter. From the numerical solution and stability analysis of the system for a single value of the bifurcation parameter, the whole bifurcation diagram in an interval of values of R is obtained. Three different bifurcation points and four types of solutions are obtained with small errors. The computing time is drastically reduced with this methodology.

Keywords: reduced-order models; proper orthogonal decomposition; spectral methods; Rayleigh–Bénard instability; geophysical flows (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/6/905/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/6/905/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:6:p:905-:d:769221

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:6:p:905-:d:769221