EconPapers    
Economics at your fingertips  
 

Extended Half-Power Exponential Distribution with Applications to COVID-19 Data

Karol I. Santoro, Héctor J. Gómez, Inmaculada Barranco-Chamorro and Héctor W. Gómez
Additional contact information
Karol I. Santoro: Departamento de Matemática, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta 1240000, Chile
Héctor J. Gómez: Departamento de Ciencias Matemáticas y Físicas, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco 4780000, Chile
Inmaculada Barranco-Chamorro: Departamento de Estadística e Investigación Operativa, Universidad de Sevilla, 41012 Sevilla, Spain
Héctor W. Gómez: Departamento de Matemática, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta 1240000, Chile

Mathematics, 2022, vol. 10, issue 6, 1-16

Abstract: In this paper, the Extended Half-Power Exponential (EHPE) distribution is built on the basis of the Power Exponential model. The properties of the EHPE model are discussed: the cumulative distribution function, the hazard function, moments, and the skewness and kurtosis coefficients. Estimation is carried out by applying maximum likelihood (ML) methods. A Monte Carlo simulation study is carried out to assess the performance of ML estimates. To illustrate the usefulness and applicability of EHPE distribution, two real applications to COVID-19 data in Chile are discussed.

Keywords: symmetric distributions; nonnegative distributions; kurtosis; maximum likelihood; COVID-19 data (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/6/942/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/6/942/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:6:p:942-:d:771557

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:6:p:942-:d:771557