Extended Half-Power Exponential Distribution with Applications to COVID-19 Data
Karol I. Santoro,
Héctor J. Gómez,
Inmaculada Barranco-Chamorro and
Héctor W. Gómez
Additional contact information
Karol I. Santoro: Departamento de Matemática, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta 1240000, Chile
Héctor J. Gómez: Departamento de Ciencias Matemáticas y Físicas, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco 4780000, Chile
Inmaculada Barranco-Chamorro: Departamento de Estadística e Investigación Operativa, Universidad de Sevilla, 41012 Sevilla, Spain
Héctor W. Gómez: Departamento de Matemática, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta 1240000, Chile
Mathematics, 2022, vol. 10, issue 6, 1-16
Abstract:
In this paper, the Extended Half-Power Exponential (EHPE) distribution is built on the basis of the Power Exponential model. The properties of the EHPE model are discussed: the cumulative distribution function, the hazard function, moments, and the skewness and kurtosis coefficients. Estimation is carried out by applying maximum likelihood (ML) methods. A Monte Carlo simulation study is carried out to assess the performance of ML estimates. To illustrate the usefulness and applicability of EHPE distribution, two real applications to COVID-19 data in Chile are discussed.
Keywords: symmetric distributions; nonnegative distributions; kurtosis; maximum likelihood; COVID-19 data (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2227-7390/10/6/942/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/6/942/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:6:p:942-:d:771557
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().