Estimating Scattering Potentials in Inverse Problems with a Non-Causal Volterra Model
Gábor Balassa
Additional contact information
Gábor Balassa: Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, H-1525 Budapest, Hungary
Mathematics, 2022, vol. 10, issue 8, 1-21
Abstract:
In this paper, a finite memory, non-causal Volterra model is proposed to estimate the potential functions in various inverse quantum mechanical problems, where the bound or scattered wave functions are used as inputs of the Volterra system, while the potential is the desired output. Two simple examples are given to show the model capabilities, where in both cases, a really good match is achieved for a very wide range of potential functions. The first example is a simple one-dimensional bound state problem, where the wave function of the first bound state is used as input to determine the model potential. The second example is a one-dimensional scattering problem, where the scattered wave is used as the system input. In both cases, a higher order, non-causal description is needed to be able to give a good estimation to the solution of the inverse problem. The model sensitivity to input perturbations is also examined, showing that the Volterra representation is capable of giving a robust estimate to the underlying dynamical system. The model could be useful in real-life situations, where the scattering potential should be found from measured data, where the precise equations that govern the dynamics of the system are not known.
Keywords: inverse scattering; Volterra model; nonlinear systems (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2227-7390/10/8/1257/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/8/1257/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:8:p:1257-:d:791308
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().