EconPapers    
Economics at your fingertips  
 

A Novel Intelligent ANFIS for the Dynamic Model of Photovoltaic Systems

Abdelhady Ramadan, Salah Kamel, I. Hamdan and Ahmed M. Agwa
Additional contact information
Abdelhady Ramadan: Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt
Salah Kamel: Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt
I. Hamdan: Department of Electrical Engineering, Faculty of Engineering, South Valley University, Qena 83523, Egypt
Ahmed M. Agwa: Department of Electrical Engineering, College of Engineering, Northern Border University, Arar 1321, Saudi Arabia

Mathematics, 2022, vol. 10, issue 8, 1-14

Abstract: Developing accurate models for photovoltaic (PV) systems has a significant impact on the evaluation of the accuracy and testing of PV systems. Artificial intelligence (AI) is the science of developing machine jobs to be more intelligent, similar to the human brain. Involving AI techniques in modeling has a significant modification in the accuracy of the developed models. In this paper, a novel dynamic PV model based on AI is proposed. The proposed dynamic PV model was designed based on an adaptive neuro-fuzzy inference system (ANFIS). ANFIS is a combination of a neural network and a fuzzy system; thus, it has the advantages of both techniques. The design process is well discussed. Several types of membership functions, different numbers of training, and different numbers of membership functions are tested via MATLAB simulations until the AI requirements of the ANFIS model are satisfied. The obtained model is evaluated by comparing the model accuracy with the classical dynamic models proposed in the literature. The root mean square error (RMSE) of the real PV system output current is compared with the output current of the proposed PV model. The ANFIS model is trained based on input–output data captured from a real PV system under specified irradiance and temperature conditions. The proposed model is compared with classical dynamic PV models such as the integral-order model (IOM) and fractional-order model (FOM), which have been proposed in the literature. The use of ANFIS to model dynamic PV systems achieves an accurate dynamic PV model in comparison with the classical dynamic IOM and FOM.

Keywords: AI; PV; ANFIS; dynamic IOM; dynamic FOM (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/8/1286/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/8/1286/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:8:p:1286-:d:792363

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:8:p:1286-:d:792363