EconPapers    
Economics at your fingertips  
 

On the Efficiency of Staggered C-Grid Discretization for the Inviscid Shallow Water Equations from the Perspective of Nonstandard Calculus

Marcel Zijlema
Additional contact information
Marcel Zijlema: Department of Hydraulic Engineering, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, The Netherlands

Mathematics, 2022, vol. 10, issue 9, 1-19

Abstract: This paper provides a rationale for the commonly observed numerical efficiency of staggered C-grid discretizations for solving the inviscid shallow water equations. In particular, using the key concepts of nonstandard calculus, we aim to show that the grid staggering of the primitive variables (surface elevation and normal velocity components) is capable of dealing with flow discontinuities. After a brief introduction of hyperreals through the notion of infinitesimal increments, a nonstandard rendition of the governing equations is derived that essentially turns into a finite procedure and permits a convenient way of modeling the hydraulic jumps in open channel flow. A central result of this paper is that the discrete formulations thus obtained are distinguished by the topological structures of the solution fields and subsequently provide a natural framework for the staggered discretization of the governing equations. Another key of the present study is to demonstrate that the discretization naturally regularizes the solution of the inviscid flow passing through the hydraulic jump without the need of non-physical dissipation. The underlying justification is provided by analytically studying the distributions of the flow variables across an infinitesimal thin hydraulic jump along with the use of hyperreal Heaviside step functions. This main finding is shown to be useful to comprehend the importance of the application of staggered finite difference schemes to accurately predict rapidly varying free-surface flows. A numerical experiment is provided to confirm this result.

Keywords: shallow water equations; hydraulic jump; staggered discretization; nonstandard calculus; regularization (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/9/1387/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/9/1387/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:9:p:1387-:d:798488

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1387-:d:798488