EconPapers    
Economics at your fingertips  
 

Non-Markovian Inverse Hawkes Processes

Youngsoo Seol
Additional contact information
Youngsoo Seol: Department of Mathematics, Dong-A University, Busan 49315, Korea

Mathematics, 2022, vol. 10, issue 9, 1-12

Abstract: Hawkes processes are a class of self-exciting point processes with a clustering effect whose jump rate is determined by its past history. They are generally regarded as continuous-time processes and have been widely applied in a number of fields, such as insurance, finance, queueing, and statistics. The Hawkes model is generally non-Markovian because its future development depends on the timing of past events. However, it can be Markovian under certain circumstances. If the exciting function is an exponential function or a sum of exponential functions, the model can be Markovian with a generator of the model. In contrast to the general Hawkes processes, the inverse Hawkes process has some specific features and self-excitation indicates severity. Inverse Markovian Hawkes processes were introduced by Seol, who studied some asymptotic behaviors. An extended version of inverse Markovian Hawkes processes was also studied by Seol. With this paper, we propose a non-Markovian inverse Hawkes process, which is a more general inverse Hawkes process that features several existing models of self-exciting processes. In particular, we established both the law of large numbers (LLN) and Central limit theorems (CLT) for a newly considered non-Markovian inverse Hawkes process.

Keywords: Hawkes process; non-Markovian inverse Hawkes process; self-exciting point processes; central limit theorems; law of large numbers (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/9/1413/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/9/1413/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:9:p:1413-:d:800056

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1413-:d:800056