EconPapers    
Economics at your fingertips  
 

On the Autocorrelation Function of 1/ f Noises

Pedro Carpena and Ana V. Coronado
Additional contact information
Pedro Carpena: Departamento de Física Aplicada II, E.T.S.I. de Telecomunicación, Universidad de Málaga, 29071 Málaga, Spain
Ana V. Coronado: Departamento de Física Aplicada II, E.T.S.I. de Telecomunicación, Universidad de Málaga, 29071 Málaga, Spain

Mathematics, 2022, vol. 10, issue 9, 1-12

Abstract: The outputs of many real-world complex dynamical systems are time series characterized by power-law correlations and fractal properties. The first proposed model for such time series comprised fractional Gaussian noise (fGn), defined by an autocorrelation function C ( k ) with asymptotic power-law behavior, and a complicated power spectrum S ( f ) with power-law behavior in the small frequency region linked to the power-law behavior of C ( k ) . This connection suggested the use of simpler models for power-law correlated time series: time series with power spectra of the form S ( f ) ∼ 1 / f β , i.e., with power-law behavior in the entire frequency range and not only near f = 0 as fGn. This type of time series, known as 1 / f β noises or simply 1 / f noises, can be simulated using the Fourier filtering method and has become a standard model for power-law correlated time series with a wide range of applications. However, despite the simplicity of the power spectrum of 1 / f β noises and of the known relationship between the power-law exponents of S ( f ) and C ( k ) , to our knowledge, an explicit expression of C ( k ) for 1 / f β noises has not been previously published. In this work, we provide an analytical derivation of C ( k ) for 1 / f β noises, and we show the validity of our results by comparing them with the numerical results obtained from synthetically generated 1 / f β time series. We also present two applications of our results: First, we compare the autocorrelation functions of fGn and 1 / f β noises that, despite exhibiting similar power-law behavior, present some clear differences for anticorrelated cases. Secondly, we obtain the exact analytical expression of the Fluctuation Analysis algorithm when applied to 1 / f β noises.

Keywords: complex time series; power-law correlations; autocorrelation function; fractal noises (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/9/1416/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/9/1416/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:9:p:1416-:d:800193

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1416-:d:800193