EconPapers    
Economics at your fingertips  
 

Correlation Assessment of the Performance of Associative Classifiers on Credit Datasets Based on Data Complexity Measures

Francisco J. Camacho-Urriolagoitia, Yenny Villuendas-Rey, Itzamá López-Yáñez, Oscar Camacho-Nieto and Cornelio Yáñez-Márquez
Additional contact information
Francisco J. Camacho-Urriolagoitia: Instituto Politécnico Nacional, Centro de Innovación y Desarrollo Tecnológico en Cómputo, Av. Juan de Dios Bátiz s/n, Nueva Industrial Vallejo, GAM, Mexico City 07700, Mexico
Yenny Villuendas-Rey: Instituto Politécnico Nacional, Centro de Innovación y Desarrollo Tecnológico en Cómputo, Av. Juan de Dios Bátiz s/n, Nueva Industrial Vallejo, GAM, Mexico City 07700, Mexico
Itzamá López-Yáñez: Instituto Politécnico Nacional, Centro de Innovación y Desarrollo Tecnológico en Cómputo, Av. Juan de Dios Bátiz s/n, Nueva Industrial Vallejo, GAM, Mexico City 07700, Mexico
Oscar Camacho-Nieto: Instituto Politécnico Nacional, Centro de Innovación y Desarrollo Tecnológico en Cómputo, Av. Juan de Dios Bátiz s/n, Nueva Industrial Vallejo, GAM, Mexico City 07700, Mexico
Cornelio Yáñez-Márquez: Instituto Politécnico Nacional, Centro de Investigación en Computación, Av. Juan de Dios Bátiz s/n, Nueva Industrial Vallejo, GAM, Mexico City 07738, Mexico

Mathematics, 2022, vol. 10, issue 9, 1-16

Abstract: One of the four basic machine learning tasks is pattern classification. The selection of the proper learning algorithm for a given problem is a challenging task, formally known as the algorithm selection problem (ASP). In particular, we are interested in the behavior of the associative classifiers derived from Alpha-Beta models applied to the financial field. In this paper, the behavior of four associative classifiers was studied: the One-Hot version of the Hybrid Associative Classifier with Translation (CHAT-OHM), the Extended Gamma (EG), the Naïve Associative Classifier (NAC), and the Assisted Classification for Imbalanced Datasets (ACID). To establish the performance, we used the area under the curve (AUC), F-score, and geometric mean measures. The four classifiers were applied over 11 datasets from the financial area. Then, the performance of each one was analyzed, considering their correlation with the measures of data complexity, corresponding to six categories based on specific aspects of the datasets: feature, linearity, neighborhood, network, dimensionality, and class imbalance. The correlations that arise between the measures of complexity of the datasets and the measures of performance of the associative classifiers are established; these results are expressed with Spearman’s Rho coefficient. The experimental results correctly indicated correlations between data complexity measures and the performance of the associative classifiers.

Keywords: supervised classification; meta-learning; associative classification; finances (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/9/1460/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/9/1460/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:9:p:1460-:d:802978

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1460-:d:802978