A Developed Frequency Control Strategy for Hybrid Two-Area Power System with Renewable Energy Sources Based on an Improved Social Network Search Algorithm
Mohamed Khamies,
Salah Kamel,
Mohamed H. Hassan and
Mohamed F. Elnaggar
Additional contact information
Mohamed Khamies: Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt
Salah Kamel: Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt
Mohamed H. Hassan: Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt
Mohamed F. Elnaggar: Department of Electrical Engineering, College of Engineering, Prince Sattam Bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia
Mathematics, 2022, vol. 10, issue 9, 1-31
Abstract:
In this paper, an effective frequency control strategy is proposed for emulating sufficient inertia power and improving frequency stability. The developed technique is based on applying virtual inertia control (VIC) with superconducting magnetic energy storage (SMES) instead of a traditional energy storage system (ESS) to compensate for the system inertia during the high penetration of renewable energy sources, taking into account the role of the controller in the secondary control loop (SCL). Unlike previous studies that depended on the designer experience in selecting the parameters of the inertia gain or the parameters of the SMES technology, the parameters of the proposed strategy are selected using optimization techniques. Moreover, an improved optimization algorithm called Improved Social Network Search algorithm (ISNS) is proposed to select the optimal parameters of the proposed control strategy. Moreover, the ISNS is improved to overcome the demerits of the traditional SNS algorithm, such as low speed convergence and global search capability. Accordingly, the ISNS algorithm is applied to a hybrid two-area power grid to determine the optimal parameters of the proposed control technique as follows: the proportional-integral derivative (PID) controller in the SCL. Additionally, the ISNS is applied to select the optimal control gains of the VIC-based SMES technology (e.g., the inertia gain, the proportional gain of the SMES, and the negative feedback gain of the SMES). Furthermore, the effectiveness of the proposed ISNS algorithm is validated by comparing its performance with that of the traditional SNS algorithm and other well-known algorithms (i.e., PSO, TSA, GWO, and WHO) considering different standard benchmark functions. Formerly, the effectiveness of the proposed frequency control technique was confirmed by comparing its performance with the system performance based on optimal VIC with ESS as well as without VIC considering different operating situations. The simulation results demonstrated the superiority of the proposed technique over other considered techniques, especially during high penetration of renewable power and lack of system inertia. As a result, the proposed technique is credible for modern power systems that take into account RESs.
Keywords: frequency stability; virtual inertia control; superconducting magnetic energy storage; renewable power penetration (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2227-7390/10/9/1584/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/9/1584/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:9:p:1584-:d:810473
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().