EconPapers    
Economics at your fingertips  
 

Cost-Sensitive Laplacian Logistic Regression for Ship Detention Prediction

Xuecheng Tian and Shuaian Wang ()
Additional contact information
Xuecheng Tian: Department of Logistics & Maritime Studies, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
Shuaian Wang: Faculty of Business, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China

Mathematics, 2022, vol. 11, issue 1, 1-15

Abstract: Port state control (PSC) is the last line of defense for substandard ships. During a PSC inspection, ship detention is the most severe result if the inspected ship is identified with critical deficiencies. Regarding the development of ship detention prediction models, this paper identifies two challenges: learning from imbalanced data and learning from unlabeled data. The first challenge, imbalanced data, arises from the fact that a minority of inspected ships were detained. The second challenge, unlabeled data, arises from the fact that in practice not all foreign visiting ships receive a formal PSC inspection, leading to a missing data problem. To address these two challenges, this paper adopts two machine learning paradigms: cost-sensitive learning and semi-supervised learning. Accordingly, we expand the traditional logistic regression (LR) model by introducing a cost parameter to consider the different misclassification costs of unbalanced classes and incorporating a graph regularization term to consider unlabeled data. Finally, we conduct extensive computational experiments to verify the superiority of the developed cost-sensitive semi-supervised learning framework in this paper. Computational results show that introducing a cost parameter into LR can improve the classification rate for substandard ships by almost 10%. In addition, the results show that considering unlabeled data in classification models can increase the classification rate for minority and majority classes by 1.33% and 5.93%, respectively.

Keywords: cost-sensitive learning; semi-supervised learning; logistic regression; port state control (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/1/119/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/1/119/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2022:i:1:p:119-:d:1016559

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2022:i:1:p:119-:d:1016559