EconPapers    
Economics at your fingertips  
 

Scalar Field Cosmology from a Modified Poisson Algebra

Genly Leon (), Alfredo D. Millano and Andronikos Paliathanasis
Additional contact information
Genly Leon: Departamento de Matemáticas, Universidad Católica del Norte, Avda. Angamos 0610, Casilla 1280, Antofagasta 1240000, Chile
Alfredo D. Millano: Departamento de Matemáticas, Universidad Católica del Norte, Avda. Angamos 0610, Casilla 1280, Antofagasta 1240000, Chile
Andronikos Paliathanasis: Departamento de Matemáticas, Universidad Católica del Norte, Avda. Angamos 0610, Casilla 1280, Antofagasta 1240000, Chile

Mathematics, 2022, vol. 11, issue 1, 1-19

Abstract: We investigate the phase space of a scalar field theory obtained by minisuperspace deformation. We consider quintessence or phantom scalar fields in the action that arises from minisuperspace deformation on the Einstein–Hilbert action. We use a modified Poisson algebra where Poisson brackets are the ? -deformed ones and are related to the Moyal–Weyl star product. We discuss early- and late-time attractors and reconstruct the cosmological evolution. We show that the model can have the ?CDM model as a future attractor if we initially consider a massless scalar field without a cosmological constant term.

Keywords: cosmology; scalar field; modified Poisson algebra; dynamical analysis (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/1/120/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/1/120/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2022:i:1:p:120-:d:1016908

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2022:i:1:p:120-:d:1016908