Canonical Concordance Correlation Analysis
Stan Lipovetsky ()
Additional contact information
Stan Lipovetsky: Independent Researcher, Minneapolis, MN 55305, USA
Mathematics, 2022, vol. 11, issue 1, 1-12
Abstract:
A multivariate technique named Canonical Concordance Correlation Analysis (CCCA) is introduced. In contrast to the classical Canonical Correlation Analysis (CCA) which is based on maximization of the Pearson’s correlation coefficient between the linear combinations of two sets of variables, the CCCA maximizes the Lin’s concordance correlation coefficient which accounts not just for the maximum correlation but also for the closeness of the aggregates’ mean values and the closeness of their variances. While the CCA employs the centered data with excluded means of the variables, the CCCA can be understood as a more comprehensive characteristic of similarity, or agreement between two data sets measured simultaneously by the distance of their mean values and the distance of their variances, together with the maximum possible correlation between the aggregates of the variables in the sets. The CCCA is expressed as a generalized eigenproblem which reduces to the regular CCA if the means of the aggregates are equal, but for the different means it yields a different from CCA solution. The properties and applications of this type of multivariate analysis are described. The CCCA approach can be useful for solving various applied statistical problems when closeness of the aggregated means and variances, together with the maximum canonical correlations are needed for a general agreement between two data sets.
Keywords: canonical correlations; Lin’s concordance correlation coefficient; canonical concordance correlation analysis; generalized eigenproblem (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/11/1/99/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/1/99/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2022:i:1:p:99-:d:1015387
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().