EconPapers    
Economics at your fingertips  
 

Trends in Agroforestry Research from 1993 to 2022: A Topic Model Using Latent Dirichlet Allocation and HJ-Biplot

Karime Montes-Escobar (), Javier De la Hoz-M, Mónica Daniela Barreiro-Linzán, Carolina Fonseca-Restrepo, Miguel Ángel Lapo-Palacios, Douglas Andrés Verduga-Alcívar and Carlos Alfredo Salas-Macias
Additional contact information
Karime Montes-Escobar: Departamento de Matemáticas y Estadística, Facultad de Ciencias Básicas, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador
Javier De la Hoz-M: Department of Statistics, University of Salamanca, 37008 Salamanca, Spain
Mónica Daniela Barreiro-Linzán: Departamento de Matemáticas y Estadística, Facultad de Ciencias Básicas, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador
Carolina Fonseca-Restrepo: Departamento de Veterinaria, Facultad de Ciencias Veterinarias, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador
Miguel Ángel Lapo-Palacios: Departamento de Matemáticas y Estadística, Facultad de Ciencias Básicas, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador
Douglas Andrés Verduga-Alcívar: Departamento de Matemáticas y Estadística, Facultad de Ciencias Básicas, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador
Carlos Alfredo Salas-Macias: Carrera de Agronomía, Facultad de Ingeniería Agronómica, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador

Mathematics, 2023, vol. 11, issue 10, 1-15

Abstract: Background: There is an immense debate about the factors that could limit the adoption of agroforestry systems. However, one of the most important is the generation of scientific information that supports the viability and benefits of the proposed techniques. Statistical analysis: This work used the Latent Dirichlet Allocation (LDA) modeling method to identify and interpret scientific information on topics in relation to existing categories in a set of documents. It also used the HJ-Biplot method to determine the relationship between the analyzed topics, taking into consideration the years under study. Results: A review of the literature was conducted in this study and a total of 9794 abstracts of scientific articles published between 1993 and 2022 were obtained. The United States, India, Brazil, the United Kingdom, and Germany were the five countries that published the largest number of studies about agroforestry, particularly soil organic carbon, which was the most studied case. The five more frequently studied topics were: soil organic carbon, adoption of agroforestry practices, biodiversity, climatic change global policies, and carbon and climatic change. Conclusion: the LDA and HJ-Biplot statistical methods are useful tools for determining topicality in text analysis in agroforestry and related topics.

Keywords: text analysis; LDA; HJ-biplot; topic diversity; modeling method (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/10/2250/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/10/2250/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:10:p:2250-:d:1144552

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:10:p:2250-:d:1144552