EconPapers    
Economics at your fingertips  
 

Modified Extended Lie-Group Method for Hessenberg Differential Algebraic Equations with Index-3

Juan Tang and Jianguang Lu ()
Additional contact information
Juan Tang: School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China
Jianguang Lu: State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, China

Mathematics, 2023, vol. 11, issue 10, 1-14

Abstract: Hessenberg differential algebraic equations (Hessenberg-DAEs) with a high index play a critical role in the modeling of mechanical systems and multibody dynamics. Motivated by the widely used Lie-group differential algebraic equation (LGDAE) method, which handles index-2 systems, we first propose a modified extended Lie-group differential algebraic equation (MELGDAE) method for solving index-3 Hessenberg-DAEs and then provide a theoretical analysis to deepen the foundation of the MELGDAE method. Moreover, the performance of the MELGDAE method is compared with the standard methods RADAU and MEBDF on index-2 and -3 DAE systems, and it is demonstrated that the MELGDAE integrator exhibits a competitive performance in terms of high accuracy and the preservation of algebraic constraints. In particular, all differential variables in index-3 Hessenberg-DAEs achieve second-order convergence using the MELGDAE method, which suggests the potential for extension to Hessenberg-DAEs with an index of 4 or higher.

Keywords: differential algebraic equations; Lie group; Hessenberg; high index (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/10/2360/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/10/2360/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:10:p:2360-:d:1150535

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:10:p:2360-:d:1150535