A Mathematical Model to Optimize the Neoadjuvant Chemotherapy Treatment Sequence for Triple-Negative Locally Advanced Breast Cancer
Juan C. López-Alvarenga,
Antonmaria Minzoni-Alessio,
Arturo Olvera-Chávez,
Gustavo Cruz-Pacheco,
Juan C. Chimal-Eguia,
Joselín Hernández-Ruíz,
Mario A. Álvarez-Blanco,
María Y. Bautista-Hernández and
Rosa M. Quispe-Siccha ()
Additional contact information
Juan C. López-Alvarenga: Population Health & Biostatistics, School of Medicine, University of Texas Rio Grande Valley, Edinburgh, TX 78539, USA
Antonmaria Minzoni-Alessio: Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad de México CP 04510, Mexico
Arturo Olvera-Chávez: Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad de México CP 04510, Mexico
Gustavo Cruz-Pacheco: Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad de México CP 04510, Mexico
Juan C. Chimal-Eguia: Laboratorio de Ciencias Matemáticas y Computacionales, Centro de Investigación en Computación, Instituto Politécnico Nacional, Ciudad de México CP 07738, Mexico
Joselín Hernández-Ruíz: Servicio de Farmacología Clínica, Hospital General de México “Dr. Eduardo Liceaga”, Ciudad de México CP 06726, Mexico
Mario A. Álvarez-Blanco: Unidad de Oncología Médica, Servicio de Oncología, Hospital General de México “Dr. Eduardo Liceaga”, Ciudad de México CP 06726, Mexico
María Y. Bautista-Hernández: Unidad de Radio Terapia, Servicio de Oncología, Hospital General de México “Dr. Eduardo Liceaga”, Ciudad de México CP 06726, Mexico
Rosa M. Quispe-Siccha: Unidad de Investigación y Desarrollo Tecnológico, Hospital General de México “Dr. Eduardo Liceaga”, Ciudad de México CP 06726, Mexico
Mathematics, 2023, vol. 11, issue 11, 1-22
Abstract:
Background: Triple-negative locally advanced breast cancer is an aggressive tumor type. Currently, the standard sequence treatment is applied, administering anthracyclines first and then a taxane plus platinum. Clinical studies for all possible treatment combinations are not practical or affordable, but mathematical modeling of the active mitotic cell population is possible. Our study aims to show the regions with the tumor’s most substantial cellular population variation by utilizing all possible values of the parameters α s i that define the annihilatory drug capacity according to the proposed treatment. Method: A piecewise linear mathematical model was used to analyze the cell population growth by applying four treatments: standard sequences of 21 days (SS21) and 14 days (SS14), administering anthracyclines first, followed by a taxane plus platinum, and inverted sequences of 21 days (IS21) and 14 days (IS14), administering a taxane plus platinum first then anthracyclines. Results: The simulation showed a higher effect of IS14 over SS14 when the rate of drug resistance was larger in the cell population during DNA synthesis (G1 and S) compared to cells in mitosis (G2 and M). However, if the proportion of resistant cells in both populations was equivalent, then treatments did not differ. Conclusions: When resistance is considerable, IS14 is more efficient than SS14, reducing the tumor population to a minimum.
Keywords: mathematical model and simulations; neoadjuvant chemotherapy; triple-negative; locally advanced breast cancer (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/11/11/2410/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/11/2410/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:11:p:2410-:d:1153250
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().