EconPapers    
Economics at your fingertips  
 

Solving Nonlinear Transcendental Equations by Iterative Methods with Conformable Derivatives: A General Approach

Giro Candelario, Alicia Cordero (), Juan R. Torregrosa and María P. Vassileva
Additional contact information
Giro Candelario: Área de Ciencias Básicas y Ambientales, Instituto Tecnológico de Santo Domingo (INTEC), Av. Los Procéres, Gala, Santo Domingo 10602, Dominican Republic
Alicia Cordero: Institute for Multidisciplinary Mathematics, Universitat Politècnica de València, 46022 València, Spain
Juan R. Torregrosa: Institute for Multidisciplinary Mathematics, Universitat Politècnica de València, 46022 València, Spain
María P. Vassileva: Área de Ciencias Básicas y Ambientales, Instituto Tecnológico de Santo Domingo (INTEC), Av. Los Procéres, Gala, Santo Domingo 10602, Dominican Republic

Mathematics, 2023, vol. 11, issue 11, 1-29

Abstract: In recent years, some Newton-type schemes with noninteger derivatives have been proposed for solving nonlinear transcendental equations by using fractional derivatives (Caputo and Riemann–Liouville) and conformable derivatives. It has also been shown that the methods with conformable derivatives improve the performance of classical schemes. In this manuscript, we design point-to-point higher-order conformable Newton-type and multipoint procedures for solving nonlinear equations and propose a general technique to deduce the conformable version of any classical iterative method with integer derivatives. A convergence analysis is given and the expected orders of convergence are obtained. As far as we know, these are the first optimal conformable schemes, beyond the conformable Newton procedure, that have been developed. The numerical results support the theory and show that the new schemes improve the performance of the original methods in some aspects. Additionally, the dependence on initial guesses is analyzed, and these schemes show good stability properties.

Keywords: nonlinear equations; conformable derivative; higher-order Newton’s procedure; multipoint methods; optimal schemes; stability (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/11/2568/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/11/2568/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:11:p:2568-:d:1163306

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:11:p:2568-:d:1163306