EconPapers    
Economics at your fingertips  
 

Optimal Dirichlet Boundary Control for the Corotational Oldroyd Model

Evgenii S. Baranovskii () and Mikhail A. Artemov
Additional contact information
Evgenii S. Baranovskii: Department of Applied Mathematics, Informatics and Mechanics, Voronezh State University, 394018 Voronezh, Russia
Mikhail A. Artemov: Department of Applied Mathematics, Informatics and Mechanics, Voronezh State University, 394018 Voronezh, Russia

Mathematics, 2023, vol. 11, issue 12, 1-12

Abstract: In this article, we investigate an optimal control problem for the coupled system of partial differential equations describing the steady-state flow of a corotational-type Oldroyd fluid through a bounded 3D (or 2D) domain. The control function is included in Dirichlet boundary conditions for the velocity field; in other words, we consider a model of inflow–outflow control. The main result is a theorem that states sufficient conditions for the solvability of the corresponding optimization problem in the set of admissible weak solutions. Namely, we establish the existence of a weak solution that minimizes the cost functional under given constraints on controls and states.

Keywords: optimal control problem; Dirichlet boundary control; corotational Oldroyd model; viscoelastic fluid; diffusive stress; objective derivative; weak solutions; existence theorem (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/12/2719/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/12/2719/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:12:p:2719-:d:1171999

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:12:p:2719-:d:1171999