A Look at Generalized Degenerate Bernoulli and Euler Matrices
Juan Hernández (),
Dionisio Peralta and
Yamilet Quintana
Additional contact information
Juan Hernández: Escuela de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Santo Domingo, Santo Domingo 10105, Dominican Republic
Dionisio Peralta: Escuela de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Santo Domingo, Santo Domingo 10105, Dominican Republic
Yamilet Quintana: Departamento de Matemáticas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, Leganés, 28911 Madrid, Spain
Mathematics, 2023, vol. 11, issue 12, 1-15
Abstract:
In this paper, we consider the generalized degenerate Bernoulli/Euler polynomial matrices and study some algebraic properties for them. In particular, we focus our attention on some matrix-inversion formulae involving these matrices. Furthermore, we provide analytic properties for the so-called generalized degenerate Pascal matrix of the first kind, and some factorizations for the generalized degenerate Euler polynomial matrix.
Keywords: generalized degenerate Bernoulli polynomials; generalized degenerate Euler polynomials; generalized degenerate Bernoulli matrix; generalized degenerate Euler matrix; generalized degenerate Pascal matrix (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2227-7390/11/12/2731/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/12/2731/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:12:p:2731-:d:1172763
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().