EconPapers    
Economics at your fingertips  
 

A Look at Generalized Degenerate Bernoulli and Euler Matrices

Juan Hernández (), Dionisio Peralta and Yamilet Quintana
Additional contact information
Juan Hernández: Escuela de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Santo Domingo, Santo Domingo 10105, Dominican Republic
Dionisio Peralta: Escuela de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Santo Domingo, Santo Domingo 10105, Dominican Republic
Yamilet Quintana: Departamento de Matemáticas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, Leganés, 28911 Madrid, Spain

Mathematics, 2023, vol. 11, issue 12, 1-15

Abstract: In this paper, we consider the generalized degenerate Bernoulli/Euler polynomial matrices and study some algebraic properties for them. In particular, we focus our attention on some matrix-inversion formulae involving these matrices. Furthermore, we provide analytic properties for the so-called generalized degenerate Pascal matrix of the first kind, and some factorizations for the generalized degenerate Euler polynomial matrix.

Keywords: generalized degenerate Bernoulli polynomials; generalized degenerate Euler polynomials; generalized degenerate Bernoulli matrix; generalized degenerate Euler matrix; generalized degenerate Pascal matrix (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/12/2731/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/12/2731/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:12:p:2731-:d:1172763

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:12:p:2731-:d:1172763