EconPapers    
Economics at your fingertips  
 

Numerical Analysis of Entropy Generation in a Double Stage Triangular Solar Still Using CNT-Nanofluid under Double-Diffusive Natural Convection

Chemseddine Maatki ()
Additional contact information
Chemseddine Maatki: Department of Mechanical Engineering, College of Engineering, Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia

Mathematics, 2023, vol. 11, issue 13, 1-19

Abstract: The analysis of entropy generation provides valuable information for the design and optimization of thermal systems. Solar stills are used for water desalination and purification. Using renewable energies, they provide a sustainable solution for drinking water supply in remote areas and off-grid situations. This work focuses on the 3D numerical study of entropy generation in a two-stage solar still subjected to the natural double diffusion convection phenomenon in the presence of CNT nanoparticles. The effects of Rayleigh number, buoyancy ratio, and nanofluid concentration on thermal, solutal, and viscous irreversibilities and flow structure were studied. The results show that increasing the buoyancy ratio leads to an increase in thermal and solutal entropy generation. The results of this study also show that total entropy is minimal for positive volume force ratios, N, at a nanoparticle volume fraction of around 3%, and for negative N ratios, at a volume fraction of around 4%.

Keywords: entropy generation; double-diffusive convection; two-stage solar still; CNT-nanofluid; numerical study (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/13/2818/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/13/2818/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:13:p:2818-:d:1177531

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:13:p:2818-:d:1177531