EconPapers    
Economics at your fingertips  
 

Simulation of the Process of Injection of Liquid Sulfur Dioxide into a Porous Reservoir Initially Saturated with Methane and Ice

Ilias K. Gimaltdinov () and Maksim V. Stolpovskii
Additional contact information
Ilias K. Gimaltdinov: Department of Physics, Ufa State Petroleum Technological University, 1 Kosmonavtov Street, 452064 Ufa, Russia
Maksim V. Stolpovskii: Department of Physics, Ufa State Petroleum Technological University, 1 Kosmonavtov Street, 452064 Ufa, Russia

Mathematics, 2023, vol. 11, issue 13, 1-13

Abstract: The paper presents the results of modeling the problem of injecting liquid sulfur dioxide into a porous reservoir initially saturated with methane and ice. The model presented in the paper assumes the formation of three different regions, namely the near one, saturated with liquid SO 2 and its hydrate; the far one, containing methane and ice; and the intermediate one, saturated with methane and water. The effects of various parameters of the porous medium and injected SO 2 on the nature of the course of the hydrate formation process have been studied. It is shown that with a decrease in reservoir permeability or injection pressure, the length of the intermediate region decreases, which, in the limiting case, means the formation of SO 2 hydrate in the mode without the formation of an extended region saturated with methane and water. It is shown that such a regime is also typical for the case of high initial injection pressures, as well as low values of the initial reservoir temperature and injection temperature.

Keywords: mathematical modeling; non-isothermal flow; porous medium; gas hydrates (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/13/2932/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/13/2932/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:13:p:2932-:d:1183555

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:13:p:2932-:d:1183555