EconPapers    
Economics at your fingertips  
 

Analysis of an Integrated Pest Management Model with Impulsive Diffusion between Two Regions

Airen Zhou ()
Additional contact information
Airen Zhou: School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang 550025, China

Mathematics, 2023, vol. 11, issue 13, 1-18

Abstract: This paper investigates an integrated pest management model with pulsed diffusion. As we all know, humans have been fighting against pests since they entered the age of farming. When pests are controlled, humans can achieve better harvests. We use the stroboscopic mapping of discrete dynamic system to obtain some important lemmas. Based on the lemmas, firstly, we give the conditions for the global asymptotic stability of the periodic solution of the pest eradication boundary; secondly, the conditions for the permanence of the investigated system are derived; thirdly, numerical simulations are used to verify our obtained theoretical results; finally, increased dispersal was found to have the opposite effect on integrated pest management. We conclude that a combination of impulsive diffusion, spraying pesticides, and releasing natural enemies can play a crucial role in integrated pest management.

Keywords: integrated pest management; releasing natural enemies; impulsive diffusion; pest eradication; permanence (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/13/2970/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/13/2970/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:13:p:2970-:d:1186043

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:13:p:2970-:d:1186043