A New Extension of C J Metric Spaces—Partially Controlled J Metric Spaces
Suhad Subhi Aiadi (),
Wan Ainun Mior Othman (),
Kok Bin Wong and
Nabil Mlaiki
Additional contact information
Suhad Subhi Aiadi: Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
Wan Ainun Mior Othman: Institute of Mathematical Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
Kok Bin Wong: Institute of Mathematical Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
Nabil Mlaiki: Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
Mathematics, 2023, vol. 11, issue 13, 1-15
Abstract:
This article introduces the concept of partially controlled J metric spaces; in particular, the J metric space with self-distance is not necessarily zero, which is important in computer science. We prove the existence of a unique fixed point for linear and nonlinear contractions, provide some examples to prove the existence of this metric space, and present some important applications in fractional differential equations, i.e., “Riemann–Liouville derivatives”.
Keywords: CJ metric spaces; partially controlled J metric spaces; fixed point; fractional differential equations (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/11/13/2973/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/13/2973/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:13:p:2973-:d:1186124
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().