EconPapers    
Economics at your fingertips  
 

Role Minimization Optimization Algorithm Based on Concept Lattice Factor

Tao Wang and Qiang Wu ()
Additional contact information
Tao Wang: Department of Computer Science and Technology, Shaoxing University, Shaoxing 312000, China
Qiang Wu: Department of Computer Science and Technology, Shaoxing University, Shaoxing 312000, China

Mathematics, 2023, vol. 11, issue 14, 1-13

Abstract: Role-based access control (RBAC) is a widely adopted security model that provides a flexible and scalable approach for managing permissions in various domains. One of the critical challenges in RBAC is the efficient assignment of roles to users while minimizing the number of roles involved. This article presents a novel role minimization optimization algorithm (RMOA) based on the concept lattice factor to address this challenge. The proposed RMOA leverages the concept lattice, a mathematical structure derived from formal concept analysis, to model and analyze the relationships between roles, permissions, and users in an RBAC system. By representing the RBAC system as a concept lattice, the algorithm captures the inherent hierarchy and dependencies among roles and identifies the optimal role assignment configuration. The RMOA operates in two phases: the first phase focuses on constructing the concept lattice from the RBAC system’s role–permission–user relations, while the second phase performs an optimization process to minimize the number of roles required for the access control. It determines the concept lattice factor using the concept lattice interval to discover the minimum set of roles. The optimization process considers both the user–role assignments and the permission–role assignments, ensuring that access requirements are met while reducing role proliferation. Experimental evaluations conducted on diverse RBAC datasets demonstrate the effectiveness of the proposed algorithm. The RMOA achieves significant reductions in the number of roles compared to existing role minimization approaches, while preserving the required access permissions for users. The algorithm’s efficiency is also validated by its ability to handle large-scale RBAC systems within reasonable computational time.

Keywords: role-based access control (RBAC); role minimization; intervals; concept lattice factor (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/14/3047/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/14/3047/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:14:p:3047-:d:1190445

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3047-:d:1190445