Sensorless Scheme for Permanent-Magnet Synchronous Motors Susceptible to Time-Varying Load Torques
Christian Aldrete-Maldonado,
Ramon Ramirez-Villalobos (),
Luis N. Coria and
Corina Plata-Ante
Additional contact information
Christian Aldrete-Maldonado: Postgraduate Program in Engineering Sciences, Dynamics Systems and Control, Tecnologico Nacional de Mexico/ IT Tijuana, Blvd. Alberto Limon Padilla s/n, Tijuana 22454, Mexico
Ramon Ramirez-Villalobos: Postgraduate Program in Engineering Sciences, Dynamics Systems and Control, Tecnologico Nacional de Mexico/ IT Tijuana, Blvd. Alberto Limon Padilla s/n, Tijuana 22454, Mexico
Luis N. Coria: Postgraduate Program in Engineering Sciences, Dynamics Systems and Control, Tecnologico Nacional de Mexico/ IT Tijuana, Blvd. Alberto Limon Padilla s/n, Tijuana 22454, Mexico
Corina Plata-Ante: Postgraduate Program in Engineering Sciences, Dynamics Systems and Control, Tecnologico Nacional de Mexico/ IT Tijuana, Blvd. Alberto Limon Padilla s/n, Tijuana 22454, Mexico
Mathematics, 2023, vol. 11, issue 14, 1-20
Abstract:
This paper is devoted to designing a sensorless high-speed tracking control for surface-mount permanent-magnet synchronous motors, considering a time-varying load torque. This proposal consists of an extended-state observer interconnected with a PI-compensated controller, considering only the measurement of electrical variables for feedback. First, to design the extended-state observer, a rotary coordinate model of the motor is extended in one state to estimate the load torque and the rotor’s position and speed. Later, the estimations are fedback to a PI-compensated controller to attenuate the time-varying load torques. Our proposed methodology aims to overcome a restriction regarding the solution of the Riccati equation respecting the Lipschitz condition for observer stability analysis. Therefore, a PI-compensated controller described as a closed-loop provides a sensorless scheme. Lyapunov stability analysis is applied to determine sufficient conditions to ensure that the states of the closed-loop system are ultimately bounded, which is one of our main contributions. The proposed observer-based controller scheme deals with unmeasured load torque fluctuations. Furthermore, we carry out high-precision emulations to provide testing scenarios of the permanent-magnet synchronous motor with some challenging load torque magnitudes and behaviors. Finally, we conduct experiments on the Technosoft ® development platform to corroborate the feasibility of the proposed control scheme in a real-world scenario.
Keywords: time-varying load torque variations; extended-state observer; sensorless control; surface-mount PMSM (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/11/14/3066/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/14/3066/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:14:p:3066-:d:1191714
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().