EconPapers    
Economics at your fingertips  
 

A Social Media Knowledge Retrieval Method Based on Knowledge Demands and Knowledge Supplies

Runsheng Miao, Yuchen Huang () and Zhenyu Zhang
Additional contact information
Runsheng Miao: College of Communication and Art Design, University of Shanghai for Science and Technology, Shanghai 200093, China
Yuchen Huang: College of Communication and Art Design, University of Shanghai for Science and Technology, Shanghai 200093, China
Zhenyu Zhang: School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China

Mathematics, 2023, vol. 11, issue 14, 1-27

Abstract: In large social media knowledge retrieval systems, employing a keyword-based fuzzy matching method to obtain knowledge presents several challenges, such as irrelevant, inaccurate, disorganized, or non-systematic knowledge results. Therefore, this paper proposes a knowledge retrieval method capable of returning hierarchical, systematized knowledge results. The method can match the knowledge demands according to the keyword input by users and then present the knowledge supplies corresponding to the knowledge demands as results to the users. Firstly, a knowledge structure named Knowledge Demand is designed to represent the genuine needs of social media users. This knowledge structure measures the popularity of topic combinations in the Topic Map, so the topic combinations with high popularity are regarded as the main content of the Knowledge Demands. Secondly, the proposed method designs a hierarchical and systematic knowledge structure, named Knowledge Supply, which provides Knowledge Solutions matched with the Knowledge Demands. The Knowledge Supply is generated based on the Knowledge Element Repository, using the BLEU similarity matrix to retrieve Knowledge Elements with high similarity, and then clustering these Knowledge Elements into several knowledge schemes to extract the Knowledge Solutions. The organized Knowledge Elements and Knowledge Solutions are the presentation of each Knowledge Supply. Finally, this research crawls posts in the “Autohome Forum” and conducts an experiment by simulating the user’s actual knowledge search process. The experiment shows that the proposed method is an effective knowledge retrieval method, which can provide users with hierarchical and systematized knowledge.

Keywords: knowledge retrieval; Topic Map; Knowledge Elements; social media (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/14/3154/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/14/3154/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:14:p:3154-:d:1196763

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3154-:d:1196763