EconPapers    
Economics at your fingertips  
 

Pattern-Multiplicative Average of Nonnegative Matrices Revisited: Eigenvalue Approximation Is the Best of Versatile Optimization Tools

Dmitrii O. Logofet ()
Additional contact information
Dmitrii O. Logofet: Laboratory of Mathematical Ecology, A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, 119017 Moscow, Russia

Mathematics, 2023, vol. 11, issue 14, 1-12

Abstract: Given several nonnegative matrices with a single pattern of allocation among their zero/nonzero elements, the average matrix should have the same pattern, too. This is the first tenet of the pattern-multiplicative average (PMA) concept, while the second one suggests the multiplicative (or geometric ) nature of averaging. The original concept of PMA was motivated by the practice of matrix population models as a tool to assess the population viability from long-term monitoring data. The task has reduced to searching for an approximate solution to an overdetermined system of polynomial equations for unknown elements of the average matrix ( G ), and hence to a nonlinear constrained minimization problem for the matrix norm. Former practical solutions faced certain technical problems, which required sophisticated algorithms but returned acceptable estimates. Now, we formulate (for the first time in ecological modeling and nonnegative matrix theory) the PMA problem as an eigenvalue approximation one and reduce it to a standard problem of linear programing (LP). The basic equation of averaging also determines the exact value of ? 1 ( G ), the dominant eigenvalue of matrix G , and the corresponding eigenvector. These are bound by the well-known linear equations, which enable an LP formulation of the former nonlinear problem. The LP approach is realized for 13 fixed-pattern matrices gained in a case study of Androsace albana , an alpine short-lived perennial, monitored on permanent plots over 14 years. A standard software routine reveals the unique exact solution, rather than an approximate one, to the PMA problem, which turns the LP approach into ‘’the best of versatile optimization tools”. The exact solution turns out to be peculiar in reaching zero bounds for certain nonnegative entries of G , which deserves modified problem formulation separating the lower bounds from zero.

Keywords: matrix population model; Androsace albana; life cycle graph; population projection matrix; matrix average; constrained optimization; linear programming; exact solution (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/14/3237/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/14/3237/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:14:p:3237-:d:1200565

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3237-:d:1200565