EconPapers    
Economics at your fingertips  
 

GLOD: The Local Greedy Expansion Method for Overlapping Community Detection in Dynamic Provenance Networks

Ying Song (), Zhiwen Zheng (), Yunmei Shi and Bo Wang
Additional contact information
Ying Song: Department of Computer, Beijing Information Science and Technology University, Beijing 100101, China
Zhiwen Zheng: Department of Computer, Beijing Information Science and Technology University, Beijing 100101, China
Yunmei Shi: Department of Computer, Beijing Information Science and Technology University, Beijing 100101, China
Bo Wang: Software Engineering College, Zhengzhou University of Light Industry, Zhengzhou 450002, China

Mathematics, 2023, vol. 11, issue 15, 1-16

Abstract: Local overlapping community detection is a hot problem in the field of studying complex networks. It is the process of finding dense clusters based on local network information. This paper proposes a method called local greedy extended dynamic overlapping community detection (GLOD) to address the challenges of detecting high-quality overlapping communities in complex networks. The goal is to improve the accuracy of community detection by considering the dynamic nature of community boundaries and leveraging local network information. The GLOD method consists of several steps. First, a coupling seed is constructed by selecting nodes from blank communities (i.e., nodes not assigned to any community) and their similar neighboring nodes. This seed serves as the starting point for community detection. Next, the seed boundaries are extended by applying multiple community fitness functions. These fitness functions determine the likelihood of nodes belonging to a specific community based on various local network properties. By iteratively expanding the seed boundaries, communities with higher density and better internal structure are formed. Finally, the overlapping communities are merged using an improved version of the Jaccard coefficient, which is a measure of similarity between sets. This step ensures that overlapping nodes between communities are properly identified and accounted for in the final community structure. The proposed method is evaluated using real networks and three sets of LFR (Lancichinetti–Fortunato–Radicchi) networks, which are synthetic benchmark networks widely used in community detection research. The experimental results demonstrate that GLOD outperforms existing algorithms and achieves a 2.1% improvement in the F-score, a community quality evaluation metric, compared to the LOCD framework. It outperforms the best existing LOCD algorithm on the real provenance network. In summary, the GLOD method aims to overcome the limitations of existing community detection algorithms by incorporating local network information, considering overlapping communities, and dynamically adjusting community boundaries. The experimental results suggest that GLOD is effective in improving the quality of community detection in complex networks.

Keywords: overlapping community; community detection; dynamic provenance network (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/15/3284/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/15/3284/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:15:p:3284-:d:1202958

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:15:p:3284-:d:1202958