EconPapers    
Economics at your fingertips  
 

Accuracy Is Not Enough: Optimizing for a Fault Detection Delay

Matej Šprogar () and Domen Verber
Additional contact information
Matej Šprogar: Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia
Domen Verber: Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia

Mathematics, 2023, vol. 11, issue 15, 1-18

Abstract: This paper assesses the fault-detection capabilities of modern deep-learning models. It highlights that a naive deep-learning approach optimized for accuracy is unsuitable for learning fault-detection models from time-series data. Consequently, out-of-the-box deep-learning strategies may yield impressive accuracy results but are ill-equipped for real-world applications. The paper introduces a methodology for estimating fault-detection delays when no oracle information on fault occurrence time is available. Moreover, the paper presents a straightforward approach to implicitly achieve the objective of minimizing fault-detection delays. This approach involves using pseudo-multi-objective deep optimization with data windowing, which enables the utilization of standard deep-learning methods for fault detection and expanding their applicability. However, it does introduce an additional hyperparameter that needs careful tuning. The paper employs the Tennessee Eastman Process dataset as a case study to demonstrate its findings. The results effectively highlight the limitations of standard loss functions and emphasize the importance of incorporating fault-detection delays in evaluating and reporting performance. In our study, the pseudo-multi-objective optimization could reach a fault-detection accuracy of 95% in just a fifth of the time it takes the best naive approach to do so.

Keywords: artificial neural networks; deep learning; fault detection; accuracy; multi-objective optimization (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/15/3369/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/15/3369/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:15:p:3369-:d:1208445

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:15:p:3369-:d:1208445