Use of Statistical Process Control for Coking Time Monitoring
Marta Benková,
Dagmar Bednárová,
Gabriela Bogdanovská () and
Marcela Pavlíčková
Additional contact information
Marta Benková: Institute of Control and Informatization of Production Processes, Faculty of Mining, Ecology, Process Control and Geotechnologies, Technical University of Košice, Němcovej 3, 042 00 Košice, Slovakia
Dagmar Bednárová: Institute of Control and Informatization of Production Processes, Faculty of Mining, Ecology, Process Control and Geotechnologies, Technical University of Košice, Němcovej 3, 042 00 Košice, Slovakia
Gabriela Bogdanovská: Institute of Control and Informatization of Production Processes, Faculty of Mining, Ecology, Process Control and Geotechnologies, Technical University of Košice, Němcovej 3, 042 00 Košice, Slovakia
Marcela Pavlíčková: Institute of Control and Informatization of Production Processes, Faculty of Mining, Ecology, Process Control and Geotechnologies, Technical University of Košice, Němcovej 3, 042 00 Košice, Slovakia
Mathematics, 2023, vol. 11, issue 16, 1-30
Abstract:
Technical and technological developments in recent decades have stimulated the rapid development of methods and tools in the field of statistical process quality control, which also includes control charts. The principle of control charts defined by Dr. W. Shewhart has been known for more than 100 years. Since then, they have been used in many industries to monitor and control processes. This paper aims to assess the possibilities of use and the selection of the most suitable type of control chart for monitoring the quality of a process depending on its nature. This tool should help operators in monitoring coking time, which is one of the important control variables affecting the quality of coke production. The autoregressive nature of the variable being monitored was considered when selecting a suitable control chart from the group of options considered. In addition to the three traditional types of control charts (Shewhart’s, CUSUM, and EWMA), which were applied to the residuals of individual values of different types of ARIMA models, various statistical tests, and plots, a dynamic EWMA control chart was also used. Its advantage over traditional control charts applied to residuals is that it works with directly measured coking time data. This chart is intended to serve as a method to monitor the process. Its role is only to alert the process operator to the occurrence of problems with the length of the coking time.
Keywords: statistical process control; control chart; autocorrelated process; ARIMA model; statistical test; coking time (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/11/16/3444/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/16/3444/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:16:p:3444-:d:1212778
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().