EconPapers    
Economics at your fingertips  
 

A Study of Multifactor Quantitative Stock-Selection Strategies Incorporating Knockoff and Elastic Net-Logistic Regression

Yumei Ren, Guoqiang Tang (), Xin Li and Xuchang Chen
Additional contact information
Yumei Ren: College of Science, Guilin University of Technology, Guilin 541006, China
Guoqiang Tang: College of Science, Guilin University of Technology, Guilin 541006, China
Xin Li: College of Science, Guilin University of Technology, Guilin 541006, China
Xuchang Chen: College of Science, Guilin University of Technology, Guilin 541006, China

Mathematics, 2023, vol. 11, issue 16, 1-20

Abstract: In the data-driven era, the mining of financial asset information and the selection of appropriate assets are crucial for stable returns and risk control. Multifactor quantitative models are a common method for stock selection in financial assets, so it is important to select the optimal set of factors. Elastic Net, which combines the benefits of the L1 and L2 penalty terms, performs better at filtering features due to the complexity of the features in high-dimensional datasets than Lasso and Ridge regression. At the same time, the false discovery rate (FDR), which is important for making reliable investment decisions, is not taken into account by the current factor-selection methodologies. Therefore, this paper constructs the Knockoff Logistic regression Elastic Net (KF-LR-Elastic Net): combining Logistic regression with Elastic Net and using Knockoff to control the FDR of variable selection to achieve factor selection. Based on the selected factors, stock returns are predicted under Logistic regression. The overall model is denoted as Knockoff Logistic regression Elastic Net-Logistic regression (KL-LREN-LR). The empirical study is conducted with data on the CSI 300 index constituents in the Chinese market from 2016–2022. KF-LREN-LR is used for factor selection and stock-return forecasting to select the top 10 stocks and establish an investment strategy for daily position changing. According to empirical evidence, KF-LR-Elastic Net can select useful factors and control the FDR, which is helpful for increasing the accuracy of factor selection. The KF-LREN-LR forecast portfolio has the advantages of high return and controlled risk, so it is informative for optimizing asset allocation.

Keywords: elastic net; false discovery rate; logistic regression; knockoff; multifactor quantitative stock selection (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/16/3502/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/16/3502/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:16:p:3502-:d:1216684

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:16:p:3502-:d:1216684