EconPapers    
Economics at your fingertips  
 

Rapid Estimation of Contact Stresses in Imageless Total Knee Arthroplasty

Jun Young Kim, Muhammad Sohail and Heung Soo Kim ()
Additional contact information
Jun Young Kim: Department of Mechanical Engineering, Dongguk University-Seoul, 30 Pildong-ro 1gil, Jung-gu, Seoul 04620, Republic of Korea
Muhammad Sohail: Department of Mechanical Engineering, Dongguk University-Seoul, 30 Pildong-ro 1gil, Jung-gu, Seoul 04620, Republic of Korea
Heung Soo Kim: Department of Mechanical, Robotics and Energy Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea

Mathematics, 2023, vol. 11, issue 16, 1-15

Abstract: Total knee arthroplasty (TKA) is a surgical technique to replace damaged knee joints with artificial implants. Recently, the imageless TKA has brought a revolutionary improvement to the accuracy of implant placement and ease of surgical process. Based on key anatomical points on the knee, the software guides the surgeon during the TKA procedure. However, the number of revision surgeries is increasing due to malalignment caused by registration error, resulting in imbalanced contact stresses that lead to failure of the TKA. Conventional stress analysis methods involve time-consuming and computationally demanding finite element analysis (FEA). In this work, a machine-learning-based approach estimates the contact pressure on the TKA implants. The machine learning regression model has been trained using FEA data. The optimal preprocessing technique was confirmed by the data without preprocessing, data divided by model size, and data divided by model size and optimal angle. Extreme gradient boosting, random forest, and extra trees regression models were trained to determine the optimal approach. The proposed method estimates the contact stress instantly within 10 percent of the maximum error. This has resulted in a significant reduction in computational costs. The efficiency and reliability of the proposed work have been validated against the published literature.

Keywords: imageless navigator; total knee arthroplasty; finite element analysis; machine learning (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/16/3527/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/16/3527/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:16:p:3527-:d:1217807

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:16:p:3527-:d:1217807